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Gamma-Ray Spectroscopy 

2019 Postgraduate Lectures 

Lecture 9: Electromagnetic Transitions 
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Electromagnetic Radiation 
 The energy of an electromagnetic radiation field can be 

described mathematically in terms of a multipole 
moment expansion  
 

 The expansion converges rapidly; hence only the lower 
orders are of importance 
 

 The terms correspond to 2n-poles and the lowest terms 
are named: 
 

      n = 0   monopole                 n = 1   dipole 
      n = 2   quadrupole              n = 3   octupole 
      n = 4   hexadecapole          …etc 
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Why EM Transitions? 

 The multipole moments are dependent on charge and 
current densities in the nucleus  and so their study 
allows information to be extracted on these properties 

 

 Magnetic (M1) moments are sensitive to nuclear 
magnetic moments and single-particle properties 

 

 Electric (E2) moments are sensitive to the nuclear 
charge distribution and collective effects such as 
deformation 
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Electromagnetic Moments 

 The electromagnetic potential due to a finite charge 
distribution q(r’) is given by: 

            Φ(r) = (1/4πε0) ∫q(r’)dr’ / |r - r’| 

 

 For r > r’ we can expand: 

            1 / |r – r’| = 1 / {r|1 – r’/r|}  

                = (1/r) {1 + (r’/r) + (r’/r)2 + (r’/r)3 + (r’/r)4 + …} 

 

 In terms of spherical harmonics: 

            Φ(r) = (1/4πε0)  

                        λμ∫{4πq(r’)(r’)λ/(2λ+1)rλ+1} Y’(θ’,φ’)Y(θ,φ)dr’ 
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Multipole Expansion 

 We can introduce the multipole coefficients: 
          Qλμ = (1/Z) ∫e(r’)λY’λμ(θ’,φ’)ρcharge(r’)dr’ 
 
 The potential can then be written as:  
          Φ(r) = (1/4πε0) λμ {4πZ/(2λ+1)rλ+1} Qλμ Yλμ(θ,φ) 
 
 Then using ρcharge(r’) = |Ψ(r)|2 we can rewrite the multipole  
    coefficients as: 
          Qλμ =  Ψ(r) | erλ Y’λμ(θ,φ) | Ψ(r)  
 
 Multipole moments are tensors of rank λ and parity (-1)λ  
    with 2(λ+1) substates: –λ ≤ μ ≤ λ 
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Electric Multipole Operator  
 If we assume that the nuclear wavefunction is made of 

products of single-particle wavefunctions, then we can 
write the electric moment operator as: 

 

       Ôλμ(Eλ)  =  protons e(ri)λY’λμ(θi,φi)  =  i
A

 ei(ri)λY’λμ(θi,φi)  

 

    with ei = e for protons and ei = 0 for neutrons 

 

 Since Yλμ has parity (-1)λ all odd-order electric multipole 
coefficients vanish 

 

 For a spherical nucleus only Q00 is nonzero 
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Magnetic Multipole Operator 
 We can define a magnetic charge density as the  
    divergence of magnetization density: 
                  ρm(r’) = -. M(r) 
 
 The magnetization current is: 
                  j(r’) = - x M(r) 
 
 The magnetic density multipole coefficient is: 

 
       Mλμ = ∫rλY’λμ(θ,φ) ρm(r) dr = - ∫rλY’λμ(θ,φ)  x M(r) dr  
 
 Since Mλμ has parity (-1)λ+1 all even-order magnetic  
    multipole coefficients vanish 
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Magnetic Multipole Operator 
 The magnetic multipole operator is defined as: 

 

       Ôλμ(Mλ) = μNi
A {2/(λ+1) gℓiℓi + gsisi} . i((ri)λY’λμ(θi,φi))  

 

    where μN is the nuclear magneton defined as: 

 

                 μN = eħ/2mNc 

 

 Recall: Bohr magneton in Atomic Physics which uses the 
mass of an electron rather than the mass of a nucleon 
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Transition Matrix Elements 
 Consider a transition from a state |I1M1 to a state |I2M2.  
    The ‘matrix element’ for the transition is: 

 
                       I2M2|Ôλμ|I1M1 
 
 The ‘Wigner Eckart Theorem’ allows this matrix element   
     to be expressed as: 

 
     I2M2|Ôλμ|I1M1 = (2I2+1)-1/2 I1M1λμ|I2M2 I2||Ôλ||I1 
 
    where I2||Ôλ||I1 is a ‘reduced’ matrix element and  
   I1M1λμ|I2M2 is a ‘Clebsch-Gordon’ vector addition  
    coefficient 
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Reduced Matrix Elements 
 Separation of ‘orientation’ of vectors and ‘intrinsic’ 

nuclear properties 
 

 The dependence of the reduced matrix element on the 
magnetic quantum numbers μ, M1 and M2 (i.e. the 
orientation) is removed 
 

 The reduced matrix element then only contains intrinsic 
nuclear information 
 

 For EM transitions between states of I2 and I1 the  
    following selection rules ensue: 
              M2 = M1 + μ    and    |I2 – I1| ≤ λ ≤ I2 + I1 
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Reduced Transition Probabilities 
 The reduced transition probability is defined as: 

 
         B(Oλ;I1I2) = |I2M2|Ôλμ|I1M1|2  

 

                             = {1/(2I1+1)} |I2||Ôλ||I1|2 

 

    which ensures that the lifetime of a nuclear state does 
    not depend on its orientation (i.e. rotational invariance) 
 
 The relation between the excitation B(Oλ)↑ and the  
    decay B(Oλ)↓ of a nuclear state is: 

 
        B(Oλ;I1I2) = { (2I2+1)/(2I1+1) }  B(Oλ;I2I1) 
 



Transition Probabilities 
 The transition rate, decays per second, for a specific 

multipole is given by 

 

      T(Oλ) = {8π(λ+1)}/{λ[(2λ+1)!!]2} {k2λ+1/ħ} B(Oλ) 

 

    where k is the wave vector of the gamma ray 

 

 Note the strong dependence on k, or gamma-ray energy 

 

 The mean lifetime of a nuclear state is then simply 

 

       τ = T-1 

 
11/20/2018 Nuclear Physics Postgraduate Lectures : E.S. Paul 12 



Transition Rates 
 Transition rates (s-1) for the lowest multipoles: 

 

                T(E1) =  1.590 x 1015 Eγ
3  B(E1) 

                T(E2) =  1.225 x 109 Eγ
5  B(E2)  

                T(E3) =  5.708 x 102 Eγ
7  B(E3) 

                T(M1) =  1.758 x 1013 Eγ
3 B(M1) 

                T(M2) =  1.355 x 107 Eγ
5 B(M2) 

                T(M3) =  6.313          Eγ
7 B(M3) 

 Units: 

    Eγ           MeV 

    B(Eλ)      e2 fm2λ 

    B(Mλ)     μN
2 fm2λ-2 
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Single-Particle Transitions 
 For an electric single-particle transition we assume 

excitation of only one proton in an average central 
potential that changes orbit from j2 to j1  

 

 A magnetic single-particle transition takes place when 
the intrinsic spin is flipped, e.g.  

 

                   j2  =  ℓ2 + ½    j1  =  ℓ1 - ½ 

 

 A useful scale of B(Eλ) and B(Mλ) values is provided by 
the Weisskopf single-particle units (W.u.) calculated 
assuming a uniform  charge density 
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Weisskopf Units 
 Weisskopf single-particle strengths are:  

 
                 B(E1)W = 0.06446 A2/3   e2fm2 

                 B(E2)W = 0.05940 A4/3  e2fm4 

                 B(E3)W = 0.05940 A2   e2fm6 

                 B(M1)W = 1.7905          μN
2 

                 B(M2)W = 1.6501 A2/3  μN
2fm2 

                 B(M3)W = 1.6501 A4/3  μN
2fm4 

 
 Typical experimental values are: 

 
      B(E1) ~ 10-2 W.u. ;  B(M1) ~ 10-1 W.u.  ; B(E2) ~ 102 W.u. 
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Single-Particle Transition Rates 
 Using the Weisskopf estimates for reduced transition 

probabilities the following single-particle transition rates 
are found: 

 

                E1    Tsp = 1.025 x 1014 Eγ
3 A2/3   s-1 

                E2    Tsp = 7.276 x 107 Eγ
5 A4/3   s-1 

                E3    Tsp = 3.339 x 101 Eγ
7 A2   s-1 

                M1    Tsp = 3.148 x 1013 Eγ
3    s-1 

                M2   Tsp = 2.236 x 107 Eγ
5 A2/3   s-1 

                M3   Tsp = 1.042 x 101 Eγ
7 A4/3   s-1 

 

 Note: low multipolarities are favoured. Electric 
transitions are faster than magnetic transitions 
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Magnetic Dipole Moment 
 The magnetic dipole moment μ provides a  measure of 

the current distribution in a nucleus. It is generated by 
the orbital motion of the protons (current loop) and the 
intrinsic spins of all nucleons 
 

 The magnetic dipole moment operator is: 
 

                       μ =μN 1
A {gℓiℓi + gsisi} 

 
 The orbital and spin g-factors for free nucleons are: 

 
                 proton:      gℓ = 1,    gs = 5.5856  
                 neutron:    gℓ = 0,    gs = -3.8262  
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Effect of the Core 
 Single particle g-factors are usually denoted gK 

 

 A core contribution to the magnetic moment can be 
estimated by assuming the protons are evenly 
distributed throughout the nucleus which is rotating 
with core angular momentum R: 

 

                  μ = gR R μN          with      gR ≈ Z/A 

 

 Since I = R + j, the magnitude of μ can be written as: 

 

                  μ = gRI + (gK – gR) {K2/(I+1)} 
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Reduced M1 Transition Rate 
 The reduced matrix element of the magnetic dipole 

moment operator leads to the following expression for 
the reduced M1 transition rate (units μN

2): 
 

        B(M1;II-1) = {3/4π} (gK – gR)2 K2 

 
                                 x {1 + (-1)I+1/2 b} |I K 1 0|I-1 K|2  
 
    where I K 1 0|I-1 K is a Clebsch-Gordon vector addition 

coefficient 
 
 The quantity b is the magnetic decoupling parameter and  
     is only nonzero for bands with K=1/2 
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Electric Quadrupole Moment 
 The electric quadrupole moment Q0 (strictly Q2μ or Q20 

for axially symmetric shapes) provides a measure of the 
charge distribution of the nucleus 

 

 The corresponding electric quadrupole operator is: 

 

                         e Q(r) = ∫ρ(r) (3cos2θ-1) dV 

 

 The intrinsic quadrupole moment is defined as the 
expectation value of this operator Q(r) for a nucleus in 
the state |I,M: 

                                  Q0 = I,M|Q(r)|I,M  
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Spectroscopic Quad. Moment 
 The intrinsic quadrupole moment Q0 is defined in the 

nuclear frame of reference.  
 

 The spectroscopic quadrupole moment QS is defined in 
the laboratory frame: 
 

                          QS = I,M=I|Q(r)|I,M=I 
 
    where the state |I,M=I defines QS as the maximum 

observable quadrupole moment 
 
 These quantities are related by: 
                         QS = Q0 {3K2 – I(I+1)} / {(I+1)(2I+3)} 
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Reduced E2 Transition Rate 
 The reduced matrix element of the electric quadrupole 

operator leads to the following expression for the 
reduced E2 transition rate (e2b2): 

 

             B(E2;II-2) = {5/16π} Q0
2|I K 2 0|I-2 K|2  

 

    where I K 2 0|I-2 K is a Clebsch-Gordon vector 
addition coefficient 

 

 The mean lifetime of a state decaying by a stretched E2 
transition is: 

             τ(ps) = 0.0816 / { Eγ
5 (MeV) B(E2) (e2b2) } 



Quadrupole Moments 
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 A DSAM lifetime measurement (12 days) was carried out at the 
ATLAS facility at ANL using Gammasphere (~100 HPGe) 

 Fractional Doppler shifts F were measured 

F = β(t)/β0 
 
β = v/c 
 
E(θ) = E0(1+Fβ0cosθ) 



Lifetime Measurements in 158Er 
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90
O 

FW 

BW 

 Gammasphere experiment GSFMA229 



157,158Er Quadrupole Moments 
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 Gammasphere experiment GSFMA229 

Spin range 
covered: 
33 – 57ħ 
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B(M1)/B(E2) Ratios 

 Experimentally it is difficult to obtain absolute B(M1) 
and B(E2) values through measurements of the mean 
lifetimes of nuclear states 

 

 In contrast, it is relatively easy to extract the ratio 
B(M1)/B(E2) knowing just γ-ray energies and intensities 

 

 The ratios are very sensitive to nuclear configurations in 
strongly coupled (high K) bands 

 

 Donau and Frauendorf geometric model 



B(M1)/B(E2) ratios in 157Er 
 B(M1)/B(E2) ratios 

for bands in 157Er 

 

 B(M1) is sensitive to 
the single-particle 
configuration : 

       g-factor 

 

 B(E2) is sensitive to 
the collectivity:  

      quadrupole moment 
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