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Electromagnetic Radiation 
 The energy of an electromagnetic radiation field can be 

described mathematically in terms of a multipole 
moment expansion  
 

 The expansion converges rapidly; hence only the lower 
orders are of importance 
 

 The terms correspond to 2n-poles and the lowest terms 
are named: 
 

      n = 0   monopole                 n = 1   dipole 
      n = 2   quadrupole              n = 3   octupole 
      n = 4   hexadecapole          …etc 



11/20/2018 Nuclear Physics Postgraduate Lectures : E.S. Paul 3 

Why EM Transitions? 

 The multipole moments are dependent on charge and 
current densities in the nucleus  and so their study 
allows information to be extracted on these properties 

 

 Magnetic (M1) moments are sensitive to nuclear 
magnetic moments and single-particle properties 

 

 Electric (E2) moments are sensitive to the nuclear 
charge distribution and collective effects such as 
deformation 



11/20/2018 Nuclear Physics Postgraduate Lectures : E.S. Paul 4 

Electromagnetic Moments 

 The electromagnetic potential due to a finite charge 
distribution q(r’) is given by: 

            Φ(r) = (1/4πε0) ∫q(r’)dr’ / |r - r’| 

 

 For r > r’ we can expand: 

            1 / |r – r’| = 1 / {r|1 – r’/r|}  

                = (1/r) {1 + (r’/r) + (r’/r)2 + (r’/r)3 + (r’/r)4 + …} 

 

 In terms of spherical harmonics: 

            Φ(r) = (1/4πε0)  

                        λμ∫{4πq(r’)(r’)λ/(2λ+1)rλ+1} Y’(θ’,φ’)Y(θ,φ)dr’ 
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Multipole Expansion 

 We can introduce the multipole coefficients: 
          Qλμ = (1/Z) ∫e(r’)λY’λμ(θ’,φ’)ρcharge(r’)dr’ 
 
 The potential can then be written as:  
          Φ(r) = (1/4πε0) λμ {4πZ/(2λ+1)rλ+1} Qλμ Yλμ(θ,φ) 
 
 Then using ρcharge(r’) = |Ψ(r)|2 we can rewrite the multipole  
    coefficients as: 
          Qλμ =  Ψ(r) | erλ Y’λμ(θ,φ) | Ψ(r)  
 
 Multipole moments are tensors of rank λ and parity (-1)λ  
    with 2(λ+1) substates: –λ ≤ μ ≤ λ 
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Electric Multipole Operator  
 If we assume that the nuclear wavefunction is made of 

products of single-particle wavefunctions, then we can 
write the electric moment operator as: 

 

       Ôλμ(Eλ)  =  protons e(ri)λY’λμ(θi,φi)  =  i
A

 ei(ri)λY’λμ(θi,φi)  

 

    with ei = e for protons and ei = 0 for neutrons 

 

 Since Yλμ has parity (-1)λ all odd-order electric multipole 
coefficients vanish 

 

 For a spherical nucleus only Q00 is nonzero 
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Magnetic Multipole Operator 
 We can define a magnetic charge density as the  
    divergence of magnetization density: 
                  ρm(r’) = -. M(r) 
 
 The magnetization current is: 
                  j(r’) = - x M(r) 
 
 The magnetic density multipole coefficient is: 

 
       Mλμ = ∫rλY’λμ(θ,φ) ρm(r) dr = - ∫rλY’λμ(θ,φ)  x M(r) dr  
 
 Since Mλμ has parity (-1)λ+1 all even-order magnetic  
    multipole coefficients vanish 
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Magnetic Multipole Operator 
 The magnetic multipole operator is defined as: 

 

       Ôλμ(Mλ) = μNi
A {2/(λ+1) gℓiℓi + gsisi} . i((ri)λY’λμ(θi,φi))  

 

    where μN is the nuclear magneton defined as: 

 

                 μN = eħ/2mNc 

 

 Recall: Bohr magneton in Atomic Physics which uses the 
mass of an electron rather than the mass of a nucleon 
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Transition Matrix Elements 
 Consider a transition from a state |I1M1 to a state |I2M2.  
    The ‘matrix element’ for the transition is: 

 
                       I2M2|Ôλμ|I1M1 
 
 The ‘Wigner Eckart Theorem’ allows this matrix element   
     to be expressed as: 

 
     I2M2|Ôλμ|I1M1 = (2I2+1)-1/2 I1M1λμ|I2M2 I2||Ôλ||I1 
 
    where I2||Ôλ||I1 is a ‘reduced’ matrix element and  
   I1M1λμ|I2M2 is a ‘Clebsch-Gordon’ vector addition  
    coefficient 
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Reduced Matrix Elements 
 Separation of ‘orientation’ of vectors and ‘intrinsic’ 

nuclear properties 
 

 The dependence of the reduced matrix element on the 
magnetic quantum numbers μ, M1 and M2 (i.e. the 
orientation) is removed 
 

 The reduced matrix element then only contains intrinsic 
nuclear information 
 

 For EM transitions between states of I2 and I1 the  
    following selection rules ensue: 
              M2 = M1 + μ    and    |I2 – I1| ≤ λ ≤ I2 + I1 
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Reduced Transition Probabilities 
 The reduced transition probability is defined as: 

 
         B(Oλ;I1I2) = |I2M2|Ôλμ|I1M1|2  

 

                             = {1/(2I1+1)} |I2||Ôλ||I1|2 

 

    which ensures that the lifetime of a nuclear state does 
    not depend on its orientation (i.e. rotational invariance) 
 
 The relation between the excitation B(Oλ)↑ and the  
    decay B(Oλ)↓ of a nuclear state is: 

 
        B(Oλ;I1I2) = { (2I2+1)/(2I1+1) }  B(Oλ;I2I1) 
 



Transition Probabilities 
 The transition rate, decays per second, for a specific 

multipole is given by 

 

      T(Oλ) = {8π(λ+1)}/{λ[(2λ+1)!!]2} {k2λ+1/ħ} B(Oλ) 

 

    where k is the wave vector of the gamma ray 

 

 Note the strong dependence on k, or gamma-ray energy 

 

 The mean lifetime of a nuclear state is then simply 

 

       τ = T-1 
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Transition Rates 
 Transition rates (s-1) for the lowest multipoles: 

 

                T(E1) =  1.590 x 1015 Eγ
3  B(E1) 

                T(E2) =  1.225 x 109 Eγ
5  B(E2)  

                T(E3) =  5.708 x 102 Eγ
7  B(E3) 

                T(M1) =  1.758 x 1013 Eγ
3 B(M1) 

                T(M2) =  1.355 x 107 Eγ
5 B(M2) 

                T(M3) =  6.313          Eγ
7 B(M3) 

 Units: 

    Eγ           MeV 

    B(Eλ)      e2 fm2λ 

    B(Mλ)     μN
2 fm2λ-2 
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Single-Particle Transitions 
 For an electric single-particle transition we assume 

excitation of only one proton in an average central 
potential that changes orbit from j2 to j1  

 

 A magnetic single-particle transition takes place when 
the intrinsic spin is flipped, e.g.  

 

                   j2  =  ℓ2 + ½    j1  =  ℓ1 - ½ 

 

 A useful scale of B(Eλ) and B(Mλ) values is provided by 
the Weisskopf single-particle units (W.u.) calculated 
assuming a uniform  charge density 
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Weisskopf Units 
 Weisskopf single-particle strengths are:  

 
                 B(E1)W = 0.06446 A2/3   e2fm2 

                 B(E2)W = 0.05940 A4/3  e2fm4 

                 B(E3)W = 0.05940 A2   e2fm6 

                 B(M1)W = 1.7905          μN
2 

                 B(M2)W = 1.6501 A2/3  μN
2fm2 

                 B(M3)W = 1.6501 A4/3  μN
2fm4 

 
 Typical experimental values are: 

 
      B(E1) ~ 10-2 W.u. ;  B(M1) ~ 10-1 W.u.  ; B(E2) ~ 102 W.u. 
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Single-Particle Transition Rates 
 Using the Weisskopf estimates for reduced transition 

probabilities the following single-particle transition rates 
are found: 

 

                E1    Tsp = 1.025 x 1014 Eγ
3 A2/3   s-1 

                E2    Tsp = 7.276 x 107 Eγ
5 A4/3   s-1 

                E3    Tsp = 3.339 x 101 Eγ
7 A2   s-1 

                M1    Tsp = 3.148 x 1013 Eγ
3    s-1 

                M2   Tsp = 2.236 x 107 Eγ
5 A2/3   s-1 

                M3   Tsp = 1.042 x 101 Eγ
7 A4/3   s-1 

 

 Note: low multipolarities are favoured. Electric 
transitions are faster than magnetic transitions 
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Magnetic Dipole Moment 
 The magnetic dipole moment μ provides a  measure of 

the current distribution in a nucleus. It is generated by 
the orbital motion of the protons (current loop) and the 
intrinsic spins of all nucleons 
 

 The magnetic dipole moment operator is: 
 

                       μ =μN 1
A {gℓiℓi + gsisi} 

 
 The orbital and spin g-factors for free nucleons are: 

 
                 proton:      gℓ = 1,    gs = 5.5856  
                 neutron:    gℓ = 0,    gs = -3.8262  
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Effect of the Core 
 Single particle g-factors are usually denoted gK 

 

 A core contribution to the magnetic moment can be 
estimated by assuming the protons are evenly 
distributed throughout the nucleus which is rotating 
with core angular momentum R: 

 

                  μ = gR R μN          with      gR ≈ Z/A 

 

 Since I = R + j, the magnitude of μ can be written as: 

 

                  μ = gRI + (gK – gR) {K2/(I+1)} 
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Reduced M1 Transition Rate 
 The reduced matrix element of the magnetic dipole 

moment operator leads to the following expression for 
the reduced M1 transition rate (units μN

2): 
 

        B(M1;II-1) = {3/4π} (gK – gR)2 K2 

 
                                 x {1 + (-1)I+1/2 b} |I K 1 0|I-1 K|2  
 
    where I K 1 0|I-1 K is a Clebsch-Gordon vector addition 

coefficient 
 
 The quantity b is the magnetic decoupling parameter and  
     is only nonzero for bands with K=1/2 
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Electric Quadrupole Moment 
 The electric quadrupole moment Q0 (strictly Q2μ or Q20 

for axially symmetric shapes) provides a measure of the 
charge distribution of the nucleus 

 

 The corresponding electric quadrupole operator is: 

 

                         e Q(r) = ∫ρ(r) (3cos2θ-1) dV 

 

 The intrinsic quadrupole moment is defined as the 
expectation value of this operator Q(r) for a nucleus in 
the state |I,M: 

                                  Q0 = I,M|Q(r)|I,M  
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Spectroscopic Quad. Moment 
 The intrinsic quadrupole moment Q0 is defined in the 

nuclear frame of reference.  
 

 The spectroscopic quadrupole moment QS is defined in 
the laboratory frame: 
 

                          QS = I,M=I|Q(r)|I,M=I 
 
    where the state |I,M=I defines QS as the maximum 

observable quadrupole moment 
 
 These quantities are related by: 
                         QS = Q0 {3K2 – I(I+1)} / {(I+1)(2I+3)} 
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Reduced E2 Transition Rate 
 The reduced matrix element of the electric quadrupole 

operator leads to the following expression for the 
reduced E2 transition rate (e2b2): 

 

             B(E2;II-2) = {5/16π} Q0
2|I K 2 0|I-2 K|2  

 

    where I K 2 0|I-2 K is a Clebsch-Gordon vector 
addition coefficient 

 

 The mean lifetime of a state decaying by a stretched E2 
transition is: 

             τ(ps) = 0.0816 / { Eγ
5 (MeV) B(E2) (e2b2) } 



Quadrupole Moments 
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 A DSAM lifetime measurement (12 days) was carried out at the 
ATLAS facility at ANL using Gammasphere (~100 HPGe) 

 Fractional Doppler shifts F were measured 

F = β(t)/β0 
 
β = v/c 
 
E(θ) = E0(1+Fβ0cosθ) 



Lifetime Measurements in 158Er 
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90
O 

FW 

BW 

 Gammasphere experiment GSFMA229 



157,158Er Quadrupole Moments 
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 Gammasphere experiment GSFMA229 

Spin range 
covered: 
33 – 57ħ 
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B(M1)/B(E2) Ratios 

 Experimentally it is difficult to obtain absolute B(M1) 
and B(E2) values through measurements of the mean 
lifetimes of nuclear states 

 

 In contrast, it is relatively easy to extract the ratio 
B(M1)/B(E2) knowing just γ-ray energies and intensities 

 

 The ratios are very sensitive to nuclear configurations in 
strongly coupled (high K) bands 

 

 Donau and Frauendorf geometric model 



B(M1)/B(E2) ratios in 157Er 
 B(M1)/B(E2) ratios 

for bands in 157Er 

 

 B(M1) is sensitive to 
the single-particle 
configuration : 

       g-factor 

 

 B(E2) is sensitive to 
the collectivity:  

      quadrupole moment 
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