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Electromagnetic Radiation

= The energy of an electromagnetic radiation field can be
described mathematically in terms of a multipole
moment expansion

= The expansion converges rapidly; hence only the lower
orders are of importance

= The terms correspond to 2"-poles and the lowest terms

are named:
n=0 monopole n=1 dipole
n=2 quadrupole n=3 octupole
n=4 hexadecapole ..etc
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Why EM Transitions?

= The multipole moments are dependent on charge and
current densities in the nucleus and so their study
allows information to be extracted on these properties

= Magnetic (M1) moments are sensitive to nuclear
magnetic moments and single-particle properties

= Electric (E2) moments are sensitive to the nuclear
charge distribution and collective effects such as
deformation

11/20/2018 Nuclear Physics Postgraduate Lectures : E.S. Paul



Electromagnetic Moments

= The electromagnetic potential due to a finite charge
distribution q(r’) is given by:
®(r) = (1/4mey) Jq(r)dr' / |r - ¢l

= For r>r we can expand:
1/0r-rl=1/{r|l1-r"/rl}
=(/r) {1+ (/) + (/)2 + (/) + (£'/r)* + .}

= Tn terms of spherical harmonics:
@(E) = (1/41'[80)
Zad {Amq()(r )Y (2A+1)rH1} Y'(6',97)Y(6,9)dr
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Multipole Expansion

= We can infroduce the multipole coefficients:
Q= (1/Z) Je(rYY' (8,9 )P charge(r)dr’

= The potential can then be written as:
®(r) = (1/4meo) Xy, {4nZ/(2A1)rM1} Quy Y (6.9)

= Then using pq.q.(r) = |¥(r)|? we can rewrite the multipole
coefficients as:

Qi = (W) [ ertY', (8,0) | ¥(r))

= Multipole moments are tensors of rank A and parity (-1)*
with 2(A+1) substates: =A< p < A
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Electric Multipole Operator

= If we assume that the nuclear wavefunction is made of
products of single-particle wavefunctions, then we can
write the electric moment operator as:

6Au(EA) - Zpr‘o‘rons e(r'i))\y')\u(ei:"pi) = A ei(ri)Ay'Au(ei:(pi)
with e, = e for protons and e, = O for neutrons

= Since Y,, has parity (-1)" all odd-order electric multipole
coefficients vanish

= For a spherical nucleus only Qg is nonzero
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Magnetic Multipole Operator

= We can define a magnetic charge density as the
divergence of magnetization density:

pm(f) - ‘Z- M(E)

= The magnetization current is:
i(r') = -V x M(r)

= The magnetic density multipole coefficient is:
My = JrY'5(8.9) pr(r) dr = - JriY', (8.9) ¥ x M(r) dr

= Since M, has parity (-1)*! all even-order magnetic
multipole coefficients vanish
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Magnetic Multipole Operator

= The magnetic multipole operator is defined as:
O, (MA) = uZA {2/(A+1) ggd; + gs} . Vil(r)Y',(81.9))

where py, is the nuclear magneton defined as:

HN = eh/szC

= Recall: Bohr magneton in Atomic Physics which uses the
mass of an electron rather than the mass of a nucleon
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Transition Matrix Elements

= Consider a transition from a state |I;M,) to a state |I,M,).
The 'matrix element’ for the transition is:

(I,M,]0,,1TMy)

= The 'Wigner Eckart Theorem' allows this matrix element
to be expressed as:

(TM, |0, 1T M) = (2T,+1) 2 (TMAI T, M) (T,11O,11Ty)

where (L, | IéAI |I,) is a'reduced’ matrix element and
(T,MAU|ILM.,) is a 'Clebsch-Gordon' vector addition
coefficient
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Reduced Matrix Elements

= Separation of ‘orientation’ of vectors and ‘infrinsic’
nuclear properties

= The dependence of the reduced matrix element on the
maghetic quantum numbers y, M; and M, (i.e. the
orientation) is removed

= The reduced matrix element then only contains intrinsic
nuclear information

= For EM transitions between states of I, and I, the

following selection rules ensue:
M,=M;+py and |I,-I;|<A<I,+T,
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Reduced Transition Probabilities

= The reduced transition probability is defined as:

B(O,I;>I,) = ZKILM,| 6AuIIlM1>|2
= {1/(2T,+1)} KL, |10,/ 1112

which ensures that the lifetime of a nuclear state does
not depend on its orientation (i.e. rotational invariance)

= The relation between the excitation B(O,)t and the
decay B(O,)| of a nuclear state is:

B(O,.I,—»I,)={(2I,+1)/(2I,+1)} B(O,.I,—I))

11/20/2018 Nuclear Physics Postgraduate Lectures : E.S. Paul 11



Transition Probabilities

= The transition rate, decays per second, for a specific
multipole is given by

T(0,) = {8n(A+1)}/{A[(2A+1)172} {k®**1/R} B(O,)
where k is the wave vector of the gamma ray
= Note the strong dependence on k, or gamma-ray energy
= The mean lifetime of a nuclear state is then simply

T=T1
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Transition Rates

= Transition rates (s!) for the lowest multipoles:

T(E1) = 1.590 x 10" E 3 B(E1)
T(E2)= 1.225 x 10° E,®> B(E2)
T(E3)= 5.708 x 102 E,” B(E3)
T(M1) = 1.758 x 1013 E 3 B(M1)
T(M2) = 1.355 x 107 E ° B(M2)
T(M3) = 6.313 E,” B(M3)
= Units:

E, MeV

B(EA) 2 fm2A

B(MA)  pp % fm@r-2
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Single-Particle Transitions

= For an electric single-particle transition we assume
excitation of only one proton in an average central
potential that changes orbit from j, to j;

= A magnetic single-particle transition takes place when
the intrinsic spin is flipped, e.g.

Jo = 8+ 3 - j1 = Y4-3

= A useful scale of B(EA) and B(MA) values is provided by
the Weisskopf single-particle units (W.u ) calculated
assuming a uniform charge density
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Weisskopf Units

= Weisskopf single-particle strengths are:

B(E1),, = 0.06446 A?/3 e2fm?
B(E2),, = 0.05940 A%/3 e2fm?
B(E3),, = 0.05940 A2 e2fms
B(M1),, = 1.7905 2
B(M2),, = 1.6501 A2/3 p, 2fm?
B(M3),, = 1.6501 A%/3 p, 2fm?

= Typical experimental values are:

B(E1) ~ 102 W.u.; B(M1) ~ 10t W.u. ; B(E2) ~ 102 W.u.
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Single-Particle Transition Rates

= Using the Weisskopf estimates for reduced transition
probabilities the following single-particle transition rates
are found:

El T, =1025x 101 E3 A3 s
E2 T, =7.276x107 E5 A3 st
E3 T, =3.339x101E7A? s
M1 T, =3148 x I0BES s
M2 T, = 2236 x107 E5 A3 s
M3 T, =1042 x 10'E,7 A3 s

= Note: low multipolarities are favoured. Electric
transitions are faster than magnetic transitions
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Magnetic Dipole Moment

= The magnetic dipole moment y provides a measure of
the current distribution in a nucleus. It is generated by
the orbital motion of the protons (current loop) and the
intrinsic spins of all nucleons

= The magnetic dipole moment operator is:
H =t 217 {gedi + gsiSi}
= The orbital and spin g-factors for free nucleons are:

proton:. g,=1, g.=55856
neutron: g,=0, g,=-3.8262
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Effect of the Core

= Single particle g-factors are usually denoted gy

= A core contribution to the magnetic moment can be
estimated by assuming the protons are evenly
distributed throughout the nucleus which is rotating
with core angular momentum R:

H=grRuy  with gy~ Z/A

= Since I =R+ j, the magnitude of p can be written as:

u = grl + (9¢ - gr) {K*/(I+1)}
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Reduced M1 Transition Rate

= The reduced matrix element of the magnetic dipole
moment operator leads to the following expression for
the reduced M1 transition rate (units py°):

B(M1;I>I-1)={3/4m} (g« - 9r)? K?
x {1+ (-1)*V2 b} (I K10|I-1K)|?

where (I K10|I-1K)is a Clebsch-Gordon vector addition
coefficient

= The quantity b is the magnetic decoupling parameter and
is only nonzero for bands with K=1/2
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Electric Quadrupole Moment

= The electric quadrupole moment Qg (strictly Q,, or Q,g
for axially symmetric shapes) provides a measure of the
charge distribution of the nucleus

= The corresponding electric quadrupole operator is:

e Q(r) = Jp(r) (3cos?6-1) dV

= The intrinsic quadrupole moment is defined as the
expectation value of this operator Q(r) for a nucleus in
the state |I,M):

Qo = IM|Q(r)|I M)
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Spectroscopic Quad. Moment

= The intrinsic quadrupole moment Q is defined in the
nuclear frame of reference.

= The spectroscopic quadrupole moment Qs is defined in
the laboratory frame:

Qs = (LM=I|Q(r)|I M=I)

where the state |I,M=I) defines Q< as the maximum
observable quadrupole moment

= These quantities are related by:
Qs = Qo {3K? - I(I+1)} / {(I+1)(2I+3)}
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Reduced E2 Transition Rate

= The reduced matrix element of the electric quadrupole
operator leads to the following expression for the
reduced E2 transition rate (e?b?):

B(E2;I>I-2)={5/16m} Qu2IKI K 2 O|I-2 K)|?

where (I K 2 0|I-2 K) is a Clebsch-Gordon vector
addition coefficient

= The mean lifetime of a state decaying by a stretched E2
transition is:
T(ps) = 0.0816 / { E,>(MeV) B(E2) (e®b?) }
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Quadrupole Moments

> A DSAM lifetime measurement (12 days) was carried out at the
ATLAS facility at ANL using Gammasphere (~100 HPGe)

» Fractional Doppler shifts F were measured

HPGe
Detector Recoils: 157Er,158Er

Target: 114Cd

Beam Particle:

48Ca, 215MeV

HPGe
Detector

HPGe
Detector

F=p(t)/Po
b=v/c

E(e) = Eo(l"‘ F[BOCOSG)

HPGe
Detector
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Lifetime Measurements in 1°8Er

158Er band 1 (7°)
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157.158Er Quadrupole Moments

» Gammasphere experiment GSFMA229
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B(M1)/B(E2) Ratios

= Experimentally it is difficult to obtain absolute B(M1)
and B(E2) values through measurements of the mean
lifetimes of nuclear states

= Tn contrast, it is relatively easy to extract the ratio
B(M1)/B(E2) knowing just y-ray energies and intensities

= The ratios are very sensitive to nuclear configurations in
strongly coupled (high K) bands

= Donau and Frauendorf geometric model
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B(M1)/B(E?2) ratios in 1°7Er

10"

o
o
B

B(M1)/B(E2) [(t,/eb) ]

O ® Band 1
- o Band 2

N H %
" (g O P
EL.N‘ o s m Band 9

O Band 10

[521]3/2
107 T s

A /l ,f [523]5/2

1072 +———

15 20 25 30

Spin I (%)

11/20/2018 Nuclear Physics Postgraduate Lectures : E.S. Paul 27

B(M1)/B(E2) ratios
for bands in 1¥7Er

B(M1) is sensitive to
the single-particle
configuration :

g-factor

B(E2) is sensitive to
the collectivity:

quadrupole moment



